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KINETIC MODEL OF SPALLING FRACTURE 

B. G. Kholodar/ UDC 539.4.019+620.187.7 

The theory of  longevity based on thermofluctuational  representations [ 1 ] has received considerable development at 
this time. I t  is shown that  the thermofluctuational  mechanism of  fracture is conserved in a longevity time band from 
several years to fractions of  a microsecond. 

The S. N. Zhurkov formula 

tp = t o exp ~ - - - - - F F ~  (1) 

is a classical dependence of  the longevity tp on the load, where t o ~ 10 -la sec, k is the, Boltzmann constant, ~ is the 

absolute temperature,  o is the tensile stress, U o is the activation energy of the fracture process, and a is a structural param- 
eter of  the material. 

However, the possibilities of  practical application of  (1) are limited because the parameters U o and a turn out  to 

be dependent  on the loading conditions (the kind of stress state, the loading mode, etc.). These limitations can be reduced 
to a significant degree if, as is customary in mechanics [2, 3], differential equations for the development of  vulnerability, 
particularly those that would yield a dependence close to the S. N. Zhurkov formula for the longevity as solutions for the 
case of  one-dimensional tension on a rod; were used to perform the computations.  

Equations of a similar kind were proposed in [4, 5] for the one-dimensional and volume states of  stress. Comparing 
the computat ion results with experimental data shows that the equations yield the regularities of  the development of 
material vulnerability sufficiently completely in different loading modes. 

In the interests of  simplification, the one-dimensional case is examined in this paper, and the equation 

dodd~ = (i  - -  o ~ ) S h { ~ ( X / ( l  - -  co))} (2) 

is used to perform the computat ions,  where co is the material vulnerability (0 ~< co ~< 1); r is the dimensionless time intro- 
duced in place of  the time t by using the formula �9 = vt; v =  voe-Y;Y = Uo/kO ; v o is a material constant;  X = ~o/kt5 

is a dimensionless load parameter;  and U0, tz, k, @, o retain the same meanings as in (1). 

The factor (1 - ~ ) -1  in the argument of the function ~0 takes account of the rise in the mean stresses in the 
damaged section. 

In conformity with the general representations [ 1], we assume the activation energy U of  the fracture processes to 

vary nonlinearly as a function of  the applied stress o. The general view of  the dependence U(o) and its approximation by 
piecewise-linear functions are shown in Fig. 1. 

In performing the computat ions below, we used the dependence ~0 (X/(1 - co)) that describes the reduction of  the 
activation energy of  the fracture processes U = U o - ~0(6) from its initial value U o in the form of a,piecewise-linear functicn 

"wi thout  strengthening," which recalls the strain diagram of an ideally plastic material in its form: ' 

Chelyabinsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 142-148, May-June, 
1980. Original article submit ted May 21, 1979. 
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x ~ ( x / ( t - - o ~ ) ) -  ~-~0 for X/(t - -  (o) < Y, 

(p(X/(t - -  oa)) = Y f o r  x / ( t  - -  o)) >1 y .  (3) 

The material longevity r computed by means of  (2) and (3) and determined from the condition co(r) = 1 is 
presented in Fig. 2 (curve 1) as a function of  the values of the parameters X and Y for the case of a load constant in time 
(X = const). For  values of  the parameter  X in the range 0 < X < Y, a significant quasilinear value corresponding to the 
Zhurkov formula is observed on the computed curves. For  high values of  the parameter X the insertion of the constraint 
Y on the function ~ X / (  1 - co)) in (2) results in a corresponding lower bound on the longevity level whose limit values 
for the loading mode under consideration are shown by the line 2 in Fig. 2 as a function of  values of the parameter Y 
(X = const). 

The insertion of  a "strengthening" section in the function SO(o) after the breakpoint in the SO(a) diagram results 
in the appearance of  an appropriate second quasilinear section on the material longevity curve (in the X = const regime) 
instead of  the "pla teau" zone that appears on the curve r(X) (Fig. 2) in the presence of the constraint SO(X/(1 - co)) ~< Y. 

It  is known [ 1, 6] that the process of  material fracture occurs in several stages in time: the stage of  generation 
and development of defects and microcracks, during whose initial period the logarithm of  the vulnerability growth rate is 
proport ional  to the applied stress, and the concluding stage called athermal or sonic, when macrocrack propagation proceeds 
at approximately constant  velocity, comprising about half the velocity of  the shear wave in the material. 

The selection of  the dependence s0(a) in the form of a bounded piecewise-linear function permits compliance with 
the vulnerability growth conditions in both stages. 

In fact, we obtain 
dro (z 

In - ~  ~, In v + In Sh (X) ~-, In v + ~ a 

from (2) and (3) for the initial period of  vulnerability development (co .~ 0) under loads X < Y. 

The vulnerability co in the material is hence accmnulated in proport ion to the time of the process. The deviation 
of  the dependence co(v) from the linear becomes noticeable, as the computations performed show, for a vulnerability 
comprising co ~ 0.03-0.05 as a function of  the load parameter  X. 

The time when the load reaches its limit value Y in the damaged section can be identified with the beginning of  
the athermal fracture stage since the rate of  vulnerability accumulation will here be determined, in practice, by the magni- 
tude of the structural parameter  P0 : 

In (do~/dt) = In v0 -1- In (1 - -  co) q- In {e-YSh(Y)}  ~. In v0. 
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Specific values of  v o and U o are determined experimentally for each material, which permits relating the character- 
istics of  the macroprocess being observed to the deeper physical parameters of  the fracture phenomenon. 

Naturally it  is impossible to apply (2), using a homogeneous stress distribution in the section and assuming a homo- 
geneous nature for the fracture of the volume, directly to the determination of  the time of microcrack passage across a 
section of  specific dimensions. To perform such a computat ion,  it is necessary to introduce, in addition, the stress distri- 
bution in the plane of  the crack as is done in the mechanics of cracks, and all the more so since known experimental data 
on the dependence of  material longevity on the stress intensity factor [6, 7] do not  contradict  the thermofluctuational  
approach. 

However, an equation of  the type (2) can be applied to describe another high-speed process, spalling fracture, since 
in this case the process of  vulnerability development is almost homogeneous as is noted in [8] (microcracks develop from 
a large number of  foci separated by 0.1-1.0 mm spacings). 

To this end, let us consider a straight rod of  constant cross section to whose free end a compression pulse in the 
form of a right triangle with diminishing amplitude is delivered. 

After  the beginning of  reflection and the time dependence of the tensile stresses in rod sections with the relative 
coordinate H = 2vS/CT (C is the velocity of  impulse propagation, T is its duration, a n d s  is the distance along the axis 
from the free end of  the rod), the impulse profile can be found b~( using the constructions presented in Fig. 3 (1-5 are 
the stress diagrams in the rod for �9 = 0, "~ <2 T/2, "~ = T/2 , 'T /2  <~ x ~ T,  �9 ~ T ,  respectively, 6, 7 are the time depen- 

dence of  the tensile stress in the sections H < 1 and H = 1, and 8 is the shape of the spalling impulsei. For  a compression 
pulse in the form of  an arbitrary triangle, the tensile stress diagrams in the sections retain the shape presented in Fig. 3, 
with the sole difference that the domain of  constant stresses become nonsymmetric relative to the axis H = 1. 

Curve 1 in Fig. 4 sets up the dependence between the amplitude X and the duration T of  the tensile linearly de- 
creasing load for H = 1, the remaining curves refer to the case under consideration of reflection of a compression pulse 
from the free endface of  a rod, and characterize the relation between the amplitude X of  the fracturing pulse and the time 
r c to fracture of  a rod section with the coordinates H = 1.0 - 2; 0.95 - 3; 0.9 - 4; 0.8 - 5; ... ; 0.1 - 12. The pulse magnitude 

I = XT/2, corresponding to H = 1, is hence minimal for a given amplitude X since the rise in vulnerability from zero to 
one is here achieved in a time equal to T. Increasing the amplitude of  the pulse X while conserving its duration T results 
in diminution of  the coordinates of  the spall section (dimensionless H and dimensional S). 

The amplitudes of  the compression pulse for which spall occurs in sections with a given value of  H are determined 
numerically on the basis of  the condit ion of minimum total time to fracture the section ~ ='~h q- ~p (Xh = TH/2 

is the time of  origin of  the tensile stresses in the section H and zp = rp(X, H) is the material longevity for a change in 

stress according to the law X = X(H) corresponding to a given H, see Fig. 3). 

Investigation of  the influence of  pulse duration and amplitude on the state of  material vulnerability in the spall 
zone is of  interest. 

The rod vulnerability at the time of fracture is noted by 1-3 in Fig. 5 for pulses with the amplitudes X = 8, 16, 28 
and appropriate minimal durations, 4-6 are the same with the pulse duration doubled, 7 is for an approximately double 
pulse amplitude relative to the initial value of  X -- 8 (here H = 0.7). 

I t  is impossible to make any final conclusions about vulnerability from the results presented in Fig. 5, or as it is 
natural to assume, about the related characteristics of  material breakup since the possibility of  the appearance of  repeated 
spalls after unloading the material in the spall section was not  provided in the calculation program. However, it is already 
seen from the results obtained that the pieces being spalled will be damaged least if the spalling is performed under the 
condit ion H = 1, i.e., for a minimal pulse amplitude (for fixed T). For  spalling with H < 1 a zone of  large damage will be 
in front of  the spall plane, and whose presence can generally result in an incorrect interpretat ion of the test results. 

The nature of  the vulnerability depends on the relationship between the pulse amplitude X and the limit parameter  
Y as the pulse duration increases. If  spalling is performed for a relationship X/Y < 1, then the fracture zone is strongly 
localized, while for X/Y ~ 1 the material is damaged intensely in a significant length. These results, obtained on the basis 

406 



1,nv 

-4 

- 8  

"/2 

9~. ~ 60 

> . . .  ' ~ .-~---._ F "  - - -  . _ v -  

,~ ~ - ~ - \ - " >  -_..._._ _ _ " ~ . ~  
�9 ' " " \  ~ ~o .,,• \ . \  \ \ 

-~'~N~__N\ " 4 \  \ [ ' . .  s ~  \ 

�9 \" " " " - ' : - - - - ~ ' x - " ~  I 

Fig. 4 

tO 

0,5 I ~  2 
0 0,8 % 6 2,4 J,2 

Fig, 5 

0,8 6 H 

of  applying a kinetic approach, are confirmed qualitatively by a fractographic portrait of such brittle materials as certain 
plastics and glass [9] for which the spall surface is smooth, and viscous materials such as soft steel, e.g., [ 10] for which 
the spall can turn out to be uneven (because of  the presence of a certain initial material vulnerability), or appear in the 
form of numerous coplanar cracks. 

The kinetic approach permits setting up a relation between the magnitudes of the initial phase I = XT/2 and the 
oo 
(, 

spall enclosed in the piece of  material being spalled (0 ~< h ~< H), I 0 = ,1 X (h, ~) rig. 
~ c  

Three spall pulse shapes are possible (see Fig. 3), to which the values of  the integrals correspond 

XT H ~ 
I~,--= 2 2 '  0 < T p ~ T ( I - - H ) ,  

I ,  X r  / / '  [ 1 _ 2 [ t _ 1 ( 1 _  ~_L)12}, T ( I - - H ) . ~ ' ~ , ~ T ( t  H '  
. . . .  2 2 ~ - -  "-2-) ~ 

H 

In conformity with computations performed by means of  (2) for H < 0.95, the first spall pulse shape is realized 

for 6 ~< X ~< 24, for which the ratio between the spall and initial pulses Io/I as a function of  H grows as a square law. 

The ratio I o/I later passes through a maximum on the order of  0.46-0.48 (depending on the values of  X and H), and drops 

sharply to zero for H = 1 (the relationship Io/I ~< 0.5 is satisfied for a rectangular compression pulse). 

On the other hand, it can be shown from the results obtained that a pulse needed for spalling at a given distance 
S = CTH/2u from the free surface will diminish with the growth of H, hence if the results of  a computation are interpreted 
from the viewpoint of  spall production and ground ejection, then pulses yielding spalts with high values H s 1 are optimal 
for this purpose. 
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Let us make still another remark in conclusion. As the results of computations show (see Figs. 2 and 4), the 
longevity emerges at a constant level corresponding to a specific value of Y. At the same time, experiments on spalling 
fracture show that [8, 11, 12] a certain dependence of the longevity on the stress is observed even in the limit load 
domain X "~ Y. The disagreement between computation and experiment can be associated with not taking into account 
the influence of the compressive stress of the initial pulse on the material properties in the model, as well as with the fact 
that under real eonditions the tensile stresses in the sections do not grow by jumps, as is assumed in this paper, but on a 
linear growth section [ 11 ]. The possibility of introducing "strengthening" in the dependence of the energy reduction on 
the external stresses ~(o), and also the form of the longevity curve for a linearly increasing load X = Vr (curve 3 in Fig. 2, 
Y = 30) show that the kinetic model under consideration is capable of easily eliminating the discrepancy mentioned. 

The results obtained indicate that kinetic equations of the type (2) can even be applied to a problem about spalling 
fracture for a complex stress state of the material. 
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